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SUMMARY

The e�ects of di�erent blood rheological models are investigated numerically utilizing two three-
dimensional (3D) models of vascular anomalies, namely a stenosis and an abdominal aortic aneurysm
model. The employed CFD code incorporates the SIMPLE scheme in conjunction with the �nite-
volume method with collocated arrangement of variables. The approximation of the convection terms is
carried out using the QUICK di�erencing scheme, whereas the code enables also multi-block computa-
tions, which are useful in order to cope with the two-block grid structure of the current computational
domain. Three non-Newtonian models are employed, namely the Casson, Power-Law and Quemada
models, which have been introduced in the past for modelling the rheological behaviour of blood and
cover both the viscous as well as the two-phase character of blood. In view of the haemodynamical
mechanisms related to abnormalities in the vascular network and the role of the wall shear stress in
initiating and further developing of arterial diseases, the present study focuses on the 3D �ow �eld and
in particular on the distribution as well as on both low and high values of the wall shear stress in the
vicinity of the anomaly. Finally, a comparison is made between the e�ects of each rheological model
on the aforementioned parameters. Results show marked di�erences between simulating blood as New-
tonian and non-Newtonian �uid and furthermore the Power-Law model exhibits di�erent behaviour in
all cases compared to the other models whereas Quemada and Casson models exhibit similar behaviour
in the case of the stenosis but di�erent behaviour in the case of the aneurysm. Copyright ? 2005 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

The presence of an abnormality in the human circulatory system may substantially alter the
�ow �eld and subsequently the �ow rate of blood leading to severe pathological incidences.
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In the case of a stenosis the consequences may be cardiac arrest and stroke whereas the
development of an abdominal aortic aneurysm (AAA) and its continuous dilation may lead
to rupture of the diseased vessel posing an extremely high risk of fatality. Furthermore, the
presence of the anomaly itself may lead to �ow disturbances such as vortex formation, which
is reported as a contributing factor to atherogenesis and thrombogenesis [1]. The role of �uid
dynamics in the arterial network and furthermore in the development of vascular diseases
involving three-dimensional (3D) geometry set-ups has been under investigation for many
years.
As regards the �ow through a stenosis, Ang and Mazumdar [2] used Computational Fluid

Dynamics (CFD) in order to model the �ow in a vessel with an asymmetric stenosis and study
the shear-stress distribution in the vicinity of the occlusion. Their results show that the peak
shear stress varies only slightly with the Reynolds number. Numerical simulation of the �ow
in an asymmetric geometry was also performed by Dvinsky and Ojha [3] in order to validate
their code and complement previous experimental results. Bethier et al. [4] numerically solved
the �ow in a realistic 3D reconstruction of the human right coronary artery focusing on the
e�ects of the reconstruction methods. They showed that the local �ow patterns are severely
a�ected by the geometrical modi�cations. Axisymmetric and asymmetric 3D stenotic models
were used by Long et al. [5] to study the �ow separation zone and the wall shear-stress
distribution in the poststenotic region involving three degrees of area reduction and using a
realistic pressure waveform as inlet condition. Their results show a complexity of the �ow
patterns especially in the �ow deceleration phase. The phenomenon of wall deformability was
taken into account in the study by Tang et al. [6] where a 3D computational model with �uid–
wall interaction was introduced to investigate the �ow in stenotic elastic tubes and to quantify
wall collapse and related critical �ow attributes and wall mechanical conditions. In addition
to numerical modelling, experimental studies regarding stenotic vessels were also performed
by Deplano and Siou� [7] using a water and glycerol mixture to simulate blood viscosity.
Their experiments conclude that high shear-stress values at the throat of the constriction can
imply more damage as plaque disruptions. Flow visualization experiments in an axisymmetric
stenotic vessel were also carried out by Bluestein et al. [8] showing that periodic vortex-
shedding in the poststenotic region begins at approximately Re=375 and that the unsteady
�ow development in the recirculation region may be the mechanism for signi�cant changes
in the distribution of mural platelet deposition.
As regards the �ow through an aneurysm, Oshima et al. [9] developed a numerical simu-

lation system employing the �nite-element method in order to clinically study the �ow in a
cerebral aneurysm. Their geometrical model was derived by computed tomography data. The
�nite-element method was also used by Kumar and Naidu [10] that performed numerical
simulations on 2D axisymmetric aneurysm models with 0–75% dilation. Their results are
essentially an examination of the sensitivity of various �ow parameters to dilation height. In
a later study, Kumar [11] employs a 3D model of a vessel with two asymmetric aneurysms
to numerically evaluate the wall shear stress and wall pressure within aneurysms and also
to analyse the vortex dynamics, which can lead to thrombus formation. Studies of AAAs in
particular have been performed by Yu et al. [12] who investigated the steady and pulsatile
�ow characteristics in axisymmetric AAA models using a commercial CFD package. A later
study by Yu [13] was solely focused on the experimental investigation of the steady and pul-
satile �ow in an AAA model using Particle Image Velocimetry. The study covered di�erent
model geometries as well as di�erent Reynolds and Womersley numbers. Egelho� et al. [14]
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investigated both experimentally and numerically the �ow in AAA models during resting and
exercise conditions and showed that no vortex formation takes place in small AAAs whereas
vortex formation and transition to turbulence takes place in moderate size AAAs under exer-
cise conditions. Transition to turbulence was also addressed in a similar experimental study
by Salsac et al. [15] who also investigated the magnitude of wall shear stress during pro-
gressive enlargement of AAAs. Numerical �ow predictions in AAAs were also performed
by Viswanathan et al. [16] who used a more sophisticated AAA model covering di�erent
geometrical parameters and con�rmed that mechanical forces on the arterial wall caused by
the blood �ow may play an important role in both development and growth of aneurysms.
The aim of the present study is to investigate the e�ects of modelling the blood as non-

Newtonian �uid in 3D �ows as done in the past for 2D �ows [17–20] employing three
well-documented blood rheological models namely the Casson [21], Power-Law [22] and
Quemada [23] models. The investigation is carried out by numerically modelling the �ow in
3D axisymmetric models of a stenosis and an aneurysm at di�erent Reynolds numbers and
degrees of severity.

2. MODEL

2.1. Governing equations

The �ow is considered to be laminar and incompressible and therefore the Navier–Stokes
equations for 3D incompressible �ow are used in their integral form in order to accommodate
the subsequent �nite-volume discretization. The continuity is given by∫

S
V · dS=0 (1)

where V=(u; v; w); u; v and w are the velocity components in the x; y and z directions,
respectively, and momentum equations

@
@t

∫
�
�u d� +

∫
S
�uV · dS=−

∫
S
pix · dS+

∫
S
(�xxix + �yxiy + �zxiz) · dS (2a)
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∫
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∫
S
�vV · dS=−

∫
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∫
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(�xyix + �yyiy + �zyiz) · dS (2b)
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∫
�
�w d� +

∫
S
�wV · dS=−

∫
S
piz · dS+

∫
S
(�xzix + �yziy + �zziz) · dS (2c)

for the x; y and z directions, respectively. � represents volume; dS equals n · dS, where n is the
unit vector normal to the surface dS; ix; iy; iz are the unit vectors in the x; y and z directions,
respectively; p is the pressure and � is the density. Following the analysis in Reference
[19] the shear-stress tensor in the di�usion terms is expressed in the case of non-Newtonian
�uids as

��=�(|�S|)�S (3)
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where �S is the shear-rate tensor and � is the viscosity expressed as a function of the second
invariant of �S.
The constitutive equations for modelling the shear thinning attributes of blood are expressed

in 3D form as follows:

(i) Casson model: Due to its discontinuous character the application of the Casson model
[21] in numerical schemes is di�cult. Papanastasiou [24] proposed an alternative expression
for the whole range of shear-stress values that therefore overcomes this obstacle. Expressed
according to (3) this equation becomes

��=
[√
�∞ +

√
�y
|�S| (1− e−

√
m| �S|)

]2
�S (4)

where �y is the yield stress, �∞ is the asymptotic viscosity and m¿100 for satisfactory
approximation. The dimensionless expression of (4) is

��∗=
1

ReCA

[
1 +

√
Bi
|�S|∗ (1− e−

√
m′| �S|∗)

]2
�S∗ (5)

where the asterisk superscript denotes dimensionless quantities and

ReCA =
�U∞D
�∞

; Bi=
�yD
�∞U∞

(6)

are the Reynolds and Bingham numbers, respectively, and are the characteristic parameters
for a Casson-model �ow.
(ii) Power-Law model: Based on this model, Walburn and Schneck [22] developed a con-

stitutive equation for blood where in exponent n and parameter k of the model the Total
Plasma Minus Albumin (TPMA) and the Haematocrit are taken into account. According to
(3) the 3D dimensionless expression is

��∗= 1
RePL

|�S|∗n−1
�S∗ (7)

where

RePL =
�Dn

kUn−2∞
(8)

is the Reynolds number and characteristic parameter for a Power-Law-model �ow.
(iii) Quemada model: This model is developed by Quemada [23] for concentrated disperse

systems. Based on (3) the 3D expression of the model becomes

��=�F

(
1− 1

2
k0 + k∞

√|�S|=�c
1 +

√|�S|=�c
’

)−2
�S (9)
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where �F is the viscosity of plasma (suspending medium), ’ is haematocrit and �c; k∞; k0 are
parameters determining the rheological behaviour of the model. The dimensionless expression
of (9) is

��∗=
1

ReQU

(
1− 1

2
k0 + k∞

√|�S|∗=�∗c
1 +

√|�S|∗=�∗c
’

)−2
�S∗ (10)

where

ReQU =
�U∞D
�F

; �∗c =
�c

U∞=D
(11)

are the characteristic parameters for a Quemada-model �ow.

2.2. Geometry

The geometry consists of a tube of diameter D and can be divided into three segments: namely
the inlet segment, the deformed segment and the outlet segment. In the case of the stenosis the
lengths of the aforementioned segments are equal to 4D; 2D and 20D, respectively, whereas
in the case of the aneurysm these are 4D; 4D and 18D, respectively. The radius R0 of the
inlet and outlet segments is undeformed and equal to D=2.
In the case of the stenosis the radius of the constricted segment is given by

R=R0

(
1− St

(
1− cos(�x=D)

2

)2)
; 06x62D (12)

where x is measured from the start of the stenosis and St is the degree of the stenosis
de�ned by

St =
R0 − Rmin
R0

(13)

and Rmin is the radius of the tube at the throat of the constriction. For the current study,
three di�erent degrees of stenosis were used namely 20; 50 and 80% (i.e. 0:2; 0:5 and 0.8,
respectively, according to (13)), the shape of which is shown in Figure 1.
In the case of the aneurysm the radius of the deformed segment is given by

R=R0 + (a− Rc +
√
R2c − [b=2− x]2); 06x6b (14)

where x is measured from the start of the dilated segment,

Rc =
a2 + (b=2)2

2a

and a is the maximum width of the dilated segment. For the current study, three di�erent
values of a were used namely 0:25; 0:4 and 0.55 corresponding to Dmax=D0 values equal to
1:5; 1:8 and 2.1. The geometry of the aneurysm is shown in Figure 2.
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Figure 1. Di�erent degrees of stenosis: (a) 20%; (b) 50%; and (c) 80%.

a
R0

b

Figure 2. Geometrical model of the vessel with the aneurysm.

2.3. Conditions and parameters

Apart from the di�erent degrees of the abnormality, the e�ects of the blood rheological models
under consideration are studied for di�erent Reynolds numbers. They are Re=100, 200 and
300 for the case of the stenosis and Re=300, 900 and 1500 in the case of the aneurysm.
Due the fact that the Navier–Stokes equations are incorporated into the numerical scheme
in their dimensionless form, the characteristic parameters in Equations (6), (8) and (11) are
to be calculated accordingly. For the Casson model and according to Charm et al. [25] for
blood, �y=10:82 mPa, �∞=3:1× 10−3 Pa s and �=1056 kg=m3. In addition, D=8mm was
considered in the case of stenosis in compliance with blood �ow in carotid arteries [6] and
D=2 cm for the case of aneurysm in compliance with blood �ow in AAAs [14]. Therefore,
from ReCA having the same de�nition as Re for Newtonian �ows, the calculation of U∞
from each of the aforementioned values of Re is possible and thus Bi can be calculated. For
the Power-Law model the parameters in (8) according to Walburn and Schneck [22] are in
the case of blood k=14:67×10−3 Pa sn and n=0:7755. Therefore according to calculation of
U∞, for each value of Re the corresponding value of RePL can be calculated. The parameters
of Quemada model for blood and for haematocrit ’=0:45 are �c = 1:88 s−1, k∞=2:07 and
k0 = 4:33 [23]. Therefore, in the same way as for the other models, the values of ReQU and �∗c
can be calculated. As D; � and �∞ are constant, the di�erent Re values essentially correspond
to di�erent inlet �ow rates, whose mean value is U∞.
The boundary conditions are constant velocity pro�le and pressure at the inlet and no-

slip condition at the walls. At the outlet boundary the pressure and velocity are derived by
extrapolation from the inner nodes. The velocity pro�le at the inlet is regarded to be that of
the fully developed �ow in a straight tube and can be derived analytically for Newtonian and
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Power-Law �ows. Its form is

u
�u
=2

[
1−

(
r
R0

)2]
; 06r6R0 (15)

for the Newtonian case and

u
�u
=
3n+ 1
n+ 1

[
1−

(
r
R0

)(n+1)=n]
; 06r6R0 (16)

for the Power-Law case. Due to the complex nature of the equations for the Quemada and
Casson models, the fully developed �ow used as inlet conditions for each of these cases is
calculated numerically similarly as in Reference [26].

3. NUMERICAL METHOD

3.1. Computational scheme

The solution of the equations that model the problem is based on the �nite-volume scheme
with a collocated arrangement of variables in conjunction with the SIMPLE algorithm. The
typical computational topology for a collocated arrangement of variables is shown in
Figure 3(a) with a central control volume (CV) with centre P and its neighbouring CVs
with centres E, W, N, S, T and B. The equations are solved through an iterative procedure.
Rewriting Equations (1) and (2) in non-dimensional form and omitting the asterisk superscript
yields ∫

S
V · dS=0 (17)

T
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W

N

S

P

B

w
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t

(a) (b)

Figure 3. Topology of: (a) grid with collocated arrangement of variables; and (b) control volume.
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∫
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where Str=D=U∞T is the Strouhal number and T is a characteristic time length.
The discretization method will be analysed for the continuity equation (17) and the

x-momentum equation (18a) whereas the analysis for (18b) and (18c) is similar. For the
discretization of the unsteady term on the CV with centre P (Figure 3) a �rst-order scheme
is introduced, thus

@
@t

∫
�
u d� ≈ ��

�t
(uP − unP) (19)

For the discretization of the other terms in (18a) the surface integrals may be split into
four CV face integrals. Attention will be focused on face ‘e’ (Figures 3(b) and 4) and the
other faces are assumed to be treated in the same way.
In discretizing the convection term, the mass �ux through face ‘e’ is evaluated using existing

known velocity

ṁme =
∫
Se
V · dS ≈ um−1

e Se (20)

where um−1
e can be calculated by linear interpolation between um−1

P and um−1
E ; m and m − 1

denote the current and previous iterations, respectively. Hence the convection term becomes

∫
Se
uV · dS ≈ ṁeue (21)

The value of ue can be calculated using QUICK [27] scheme, which is third-order accurate
and therefore reduces the problem of numerical di�usion compared to lower-order schemes.
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Figure 4. Grid topology for the QUICK scheme.

For the cell face ‘e’ (Figure 4) the expression for velocity yields.

uQUICKe =

{
uP + C+1 (uP − uW′)m−1 + C+2 (uE − uP)m−1 + due if ṁe¿0

uP + C−
1 (uE − uEE′)m−1 + C−

2 (uP − uE)m−1 + due if ṁe¡0
(22)

where

due =
(
@u
@x

)m−1

e
(xe − xe′) +

(
@u
@y

)m−1

e
(ye − ye′) +

(
@u
@z

)m−1

e
(ze − ze′)

and

C+1 =
�x2e

4(�xw +�xe)�xw
; C−

1 =
�x2e

4(�xe + �xee)�xee

C+2 =
2�xw +�xe
4(�xw +�xe)

; C−
2 =

2�xee + �xe
4(�xe + �xee)

(23)

Therefore the discretized form of the convection term is∫
Se
�uV · dS ≈ �uQUICKe ṁe (24)

where the �rst term (uP) in (22) is calculated implicitly whereas the remaining terms (super-
script m− 1) are treated as source terms.
Calculation of the di�usive term requires rewriting the term as∫

Se
�
(

∇u+ @u
@x
ix +

@v
@x
iy +

@w
@x
iz

)
· dS=

∫
Se
�
@u
@n
dS︸ ︷︷ ︸

A

+
∫
Se
�
[
@u
@x
;
@v
@y
;
@w
@z

]
· n dS︸ ︷︷ ︸

B

(25)

where n is the direction perpendicular to dS and n is the corresponding unit vector. It can be
assumed that @u=@n ≈ @u=@� where �==PE and therefore∫

Se
�
@u
@�
dS︸ ︷︷ ︸

A′

≈ �e uE − uP
PE

Se
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The introduced error can be handled using deferred correction that is by expressing the
di�usion term (DT) as A′m + (A+ B− A′)m−1 or

DT=�e
uE−uP
PE

Se+�e

{[
2
(
@u
@x

)
e
Sxe+

(
@u
@y
+
@v
@x

)
e
Sye +

(
@u
@z
+
@w
@x

)
e
Sze

]
−
∫
Se

@u
@�
dS
}m−1

(26)

where the superscripts x, y, z denote vector components e.g. Sxe = ix · Se. The term noted as
m− 1 is considered as source term.
The pressure term of the x-momentum equation corresponding to the whole CV

(Figure 3(a)) is discretized as

−
∫
S
pix · dS ≈ −(peSxe − pwSxw + pnSxn − psSxs + ptSxt − pbSxb)m−1 (27)

where the values of p can be linear interpolation between the neighbouring nodes (e.g. pm−1
e

can be calculated by linear interpolation between pm−1
P and pm−1

E ).
If the aforementioned approximations are substituted into (18a) the following algebraic

equation is obtained

AxPuP +
∑
i
Axi ui=Q

x
P; i=T;B;E;W;N;S (28)

where Ai are the coe�cients of the unknowns and QP are the source terms containing all
known terms arising from the discretization.
The coe�cients for the y- and z-momentum equations (18b) and (18c) are obtained in a

similar fashion yielding a discretized equation similar to (28):

AyPvP +
∑
i
Ayi vi =Q

y
P ; i=T;B;E;W;N;S (29)

AzPwP +
∑
i
Azi wi =Q

z
P; i=T;B;E;W;N;S (30)

For solving the �ow and pressure �eld the SIMPLE method is applied. In the �rst step of
the method a pressure (pm−1) and a velocity �eld (um−1; vm−1; wm−1) are guessed. Then the
discretized momentum equations (28)–(30) are solved using the guessed �eld to yield the
velocity components u∗; v∗; w∗. These values do not generally satisfy mass conservation on
each CV. Therefore the velocities u∗; v∗ and w∗ need to be corrected as follows:

um= u∗ + u′; vm= v∗ + v′; wm=w∗ + w′ (31)

and the �nal values in the m iteration should also satisfy the momentum equation. This is
possible only if the pressure is also corrected

pm=pm−1 + p′ (32)

Expressing the velocity on cell face e in terms of the discretized x-momentum equation one
can obtain two equations for each of u∗ and um. Subtracting these equations yields

u′
e = ũe − Ce(p′

E − p′
P)Se (33)
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where

ũe = �ume − �u∗
e + Ce

[(∫
S
pix · dS

)m
−
(∫

S
pix · dS

)m−1]
(34)

and where (�) denotes interpolated value between nodes P and E and Ce accounts for geometric
properties of the current CV. The corrected velocities are required to satisfy the continuity
equation. If the mass �ux through cell face ‘e’ is

ṁe = ume Se = (u
∗
e + u

′
e)Se (35)

then a similar expression for the rest of the CV faces yields∑
c
ṁc=�ṁ

∗ +�ṁ′=0; c= t; b; e;w; n; s (36)

Substituting the term �ṁ′ in (36) as in (33) yields

APp′
P +

∑
i
Aip′

i = −�ṁ∗ −� ˜̇m; i=T;B;E;W;N;S; (37)

where A are the coe�cients of the unknown variables resulting from the discretized expressions
for the pressure corrections. If the last term on the RHS of (37) is omitted because it involves
values, which are not yet known, one obtains the pressure-correction equation

APp′
P +

∑
i
Aip′

i = −�ṁ∗; i=T;B;E;W;N;S (38)

Applying (38) on all CVs of the domain results to a system of equations, the solutions of
which gives the pressure corrections on each computational node. These are used further to
correct the velocity values, which will now satisfy the continuity equations. However, they
do not satisfy the momentum equations, so another iteration must be performed using the
solutions from the previous time step as an initial guess. This iteration procedure continues
until reaching the desired accuracy. It should be noted that if the last term on the RHS of
(37) is neglected the SIMPLE algorithm may lead to divergence and therefore underrelaxation
should be used. The solution of the systems of equations (28)–(30) and (38) is carried out
using Stone’s method [28].

3.2. Grid

The grid used in the computations consists of hexahedral elements and is based on multiblock
structure. The inner block is of a rectangular cross section and is encircled by the outer block
as shown in Figure 5. Furthermore, the grid is locally re�ned at the constricted segment so
that the anomalies in the �ow �eld and the wall shear-stress (WSS) distribution caused by
the constriction are captured in more detail.
A grid re�nement study is also contacted and three grid resolutions were tested namely

grid a with 39 345 CVs, grid b with 77 108 CVs and grid c with 104 160 CVs. The test is
carried out for Newtonian �ow and for a 50% degree of stenosis by comparing the dimen-
sionless WSS (Figure 6). It can be seen that the results for grids b and c are very close and
therefore grid b is used for all further computations of this study both for the stenosis and
the aneurysm cases.
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Figure 5. 3D grid with cross-section.
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Figure 6. Grid re�nement study.

4. RESULTS AND DISCUSSION

Computations are conducted for three di�erent Re numbers and three di�erent degrees of
abnormality for each case of stenosis and aneurysm so that the e�ects of a blood rheological
model on important �ow aspects such as the �ow �eld and WSS distribution are determined.
The e�ects of �ow rate are studied by means of di�erent Re numbers as follows. Velocity
U∞ is calculated from Re (or ReCA) and then used to calculate the rest of the parameters in
(6), (8) and (11). Therefore the intercomparison between the models for a speci�c value of
Re implies intercomparison for the same inlet �ow rate.
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4.1. E�ects of �ow rate

4.1.1. Stenosis. The �ows for all models corresponding to Re=100; 200 and 300 are simu-
lated according to realistic �ow in carotid arteries [6] assuming 50% degree of stenosis. No
indication of asymmetry of �ow exists as regards the axis of the tube so the results are pre-
sented corresponding to a random plane containing the axis. The streamline patterns for the
Casson model are shown in Figure 7 where the fashion of growth of the recirculation region
with increasing Re is evident. The di�erence between the vortex-lengths for Re=100 and 200
seems to be the same as that between Re=200 and 300 and that applies to all model cases.
From the pressure-di�erence (�P) between inlet and outlet (Table I) one can see that all

non-Newtonian models cause higher pressure-di�erence than the Newtonian case and implies
that a speci�c pressure di�erence would induce lower �ow rates for the non-Newtonian mod-
els. In particular the highest �P is induced by the Power-Law model followed by the Casson
and then the Quemada models. The change from Re=100 to 200 seems to induce the same
rise to �P as the change from Re=200 to 300 for all models. Furthermore, the di�erence
between �P values for every model at a speci�c Re seems to be the same for all three Re
values.

(a)

(c)

(b)

x*

5 10

Figure 7. Streamlines for Casson-based �ow for: (a) Re=100; (b) Re=200; and (c) Re=300
and for 50% degree of stenosis.

Table I. Pressure di�erence (in N=m2) for the various cases
of the stenosis �ow.

St (%) Re Newtonian Casson Power-Law Quemada

20 100 12.57 22.62 27.54 19.26
50 100 21.17 31.55 36.52 28.06
50 200 53.05 66.41 72.99 62.02
50 300 95.67 110.39 115.30 105.54
80 100 487.25 493.99 424.83 491.49
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Figure 8. WSS distribution for di�erent Re numbers for the stenosis �ow for: (a) Newtonian; (b) Casson;
(c) Power-Law; and (d) Quemada models.

The distribution of the WSS is one of the most important �ow aspects due to its direct
relevance to atherosclerosis formation [29]. The distribution of the x-wise component of the
WSS is shown in Figure 8 for all models. A prominent positive peak of the distribution is
evident at the throat of the constriction, the value of which increases with increasing Re. The
peak is followed by negative values indicating the presence of the recirculation region and
gradually the WSS restores its undisturbed value. The maximum (�maxW ) and minimum (�minW )
values of the distribution are shown in Table II for all models. For Re=100 the values of
�minW and �maxW are very close for all models and higher in absolute compared to the Newtonian
case. As Re increases the e�ect di�erences between the models become more marked and in
particular �maxW for the Power-Law model is lower compared to the rest of the models. This is

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:489–510



3D MODELS OF VASCULAR ANOMALIES 503

Table II. Minimum and maximum wall shear stress (in N=m2) for the
various cases of the stenosis �ow.

Newtonian Casson Power-Law Quemada

St (%) Re �minW �maxW �minW �maxW �minW �maxW �minW �maxW

20 100 4:89e− 2 0.380 0.125 0.523 0.162 0.593 9:88e− 2 0.477
50 100 −8:63e− 2 2.26 −0:110 2.53 −0:108 2.54 −0:102 2.45
50 200 −0:309 5.84 −0:351 6.27 −0:369 5.70 −0:334 6.14
50 300 −0:668 10.21 −0:776 10.78 −0:846 9.17 −0:742 10.61
80 100 −4:42 42.83 −4:58 43.94 −4:48 30.45 −4:54 43.59

(a)

(c)

(b)

x*
2 4 6 8 10 12

Figure 9. Streamlines for Casson-based �ow for: (a) Re=300; (b) Re=900; and
(c) Re=1500 and width of aneurysm a=0:55.

induced from the lower viscosity that the Power-Law model exhibits for the high shear-rates
occurring at the throat of the constriction due to the velocity gradients becoming more intense
for higher Re. The value of �maxW for the Power-Law model also di�ers markedly from the
other models for higher Re.

4.1.2. Aneurysm. The �ows for all models corresponding to Re=300, 900 and 1500 are
simulated assuming a=0:55 width of aneurysm. This range of Re numbers covers realistic
�ow conditions in the abdominal aorta [13, 30]. No indication of asymmetry of �ow exists as
regards to the axis of the tube so the results are presented corresponding to a random plane
containing the axis.
The streamline patterns for the Casson model are shown in Figure 9 where the �ow is

regarded from left to right. The �ow for Re=300 is almost fully attached and the recirculation
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Table III. Pressure di�erence (in N=m2) for the various cases
of the aneurysm �ow.

a Re Newtonian Casson Power-Law Quemada

0.55 300 5.43 12.21 13.97 9.85
0.55 900 16.96 27.83 34.10 24.33
0.55 1500 29.70 43.52 51.52 38.91
0.40 300 5.43 12.23 13.99 9.86
0.25 300 5.43 12.27 14.05 9.89
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Figure 10. WSS distribution for di�erent Re numbers for the aneurysm �ow for: (a) Newtonian;
(b) Casson; (c) Power-Law; and (d) Quemada models.
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Table IV. Minimum and maximum wall shear stress (in N=m2) for the
various cases of the aneurysm �ow.

Newtonian Casson Power-Law Quemada

a Re �minW �maxW �minW �maxW �minW �maxW �minW �maxW

0.55 300 −0:012 0.132 −5:32e− 3 0.258 −0:012 0.297 −0:012 0.219
0.55 900 −0:126 0.418 −0:082 0.653 −0:093 0.774 −0:094 0.577
0.55 1500 −0:297 0.696 −0:274 0.983 −0:298 1.162 −0:290 0.886
0.40 300 −7:21e− 3 0.122 6:08e− 3 0.238 −5:28e− 3 0.272 −5:61e− 3 0.201
0.25 300 −4:30e− 3 0.108 0.022 0.209 0.016 0.240 9:54e− 3 0.176

(a)

(c)

(b)

x*

5 10 15

Figure 11. Streamlines for Casson-based �ow at Re=100 and for di�erent degrees of
stenosis: (a) 20%; (b) 50%; and (c) 80%.

zone is barely formed. For Re=900 the recirculation zone is covering the dilated segment
whereas the core �ow does not expand within the bulge as for Re=300. As Re increases
further (Re=1500) the area of the recirculation zone remains unaltered whereas the vortex
center moves downstream towards the exit from the aneurysm.
From the pressure-di�erence (�P) between inlet and outlet (Table III) one can see that

all non-Newtonian models cause higher pressure-di�erence than the Newtonian case and that
implies that a speci�c pressure di�erence would induce lower �ow rates for the non-Newtonian
models. In particular the highest �P is induced by the Power-Law model followed by the
Casson and then the Quemada models. The change from Re=300 to 900 seems to induce
approximately the same rise to �P as the change from Re=900 to 1500 for all models.
The distribution of the x-wise component of the WSS is shown in Figure 10 for all mod-

els. The WSS drops as the �ow enters the bulge whereas a prominent positive peak of the
distribution is evident at the end of the dilated segment, the value of which increases with
increasing Re. For high Re numbers the drop of WSS within the bulge reaches negative val-
ues indicating the presence of the recirculation region. As the �ow exits the bulge the WSS
restores gradually its undisturbed value. The maximum (�maxW ) and minimum (�minW ) values of
the distribution are shown in Table IV for all models. For Re=300 the values of �minW are
very close for all models and similar to the Newtonian case whereas the values of �maxW are
highest for the Power-Law followed gradually by the Casson and the Quemada models. All
aforementioned values of �maxW are substantially higher than for the Newtonian case. As far as
�minW is concerned the same yields for higher values of Re whereas the increase of Re induces
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Figure 12. WSS distribution for di�erent degrees of stenosis for: (a) Newtonian; (b) Casson;
(c) Power-Law; and (d) Quemada models.

lower values of �minW for the Newtonian case compared to the other models for which the
values of �minW are very close.

4.2. E�ects of abnormality degree

4.2.1. Stenosis. The �ows for all models corresponding to Re=100 and degrees of stenosis
equal to 20; 50 and 80% are simulated. The streamlines for the Casson model in Figure 11
show the marked e�ects that the degree of stenosis has on the �ow �eld. Whereas for 20%
stenosis there is no vortex formed and even for 50% stenosis there is a small recirculation
zone, for 80% stenosis the recirculation zone is dominant in the �ow �eld.
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(a)
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Figure 13. Streamlines for Casson-based �ow for di�erent aneurysm widths:
(a) a=0:25; (b) a=0:40; and (c) a=0:55 and Re=300.

The di�erent impact that the severity of the stenosis has on the di�erent model �ows is
more evident in the �P results (Table I). It can be seen that although for St =20% the
value of �P is the highest for the Power-Law model followed by the Casson and then the
Quemada models, it becomes the lowest for St =80%. Taking into account that the pressure
di�erence is the integral of the WSS over the entire wall of the tube, this phenomenon is
directly attributed to the low peak of WSS at the throat of the stenosis that the Power-Law
model exhibits compared to the other models (Figure 12). The Quemada and Casson models
show similar trends for all degrees of stenosis. This can also be seen in Table II in addition
with the results for �minW . The latter is at the same levels for all models when a recirculation
zone is formed (St =50; 80%). It is worthwhile mentioning that for a change of 30% in the
degree of stenosis from 50 to 80% the increase in �maxW is approximately 10 times greater than
for the same change from 20 to 50% for all models.

4.2.2. Aneurysm. The �ows for all models corresponding to Re=300 and aneurysm width
equal to a=0:25; 0:40 and 0.55 are simulated. The streamlines for the Casson model in
Figure 13 show the e�ects that the degree of aneurysm width has on the �ow �eld. It can be
seen that for a=0:25 the �ow is fully attached and the recirculation zone forms progressively
for a¿0:4. As shown in Table III the severity of the bulge shows no e�ect on �P for
any of the models. �P remains highest for the Power-Law model followed gradually by the
Casson, Quemada and Newtonian models but the increase of dilation leaves �P for every
model virtually una�ected. Taking into account that the pressure di�erence is directly related
to the integral of the WSS on the entire area of the wall, one should not expect considerable
e�ects of the bulge increase on the WSS distribution. Indeed as shown in Figure 14 the WSS
distribution for the Newtonian case remains virtually una�ected whereas the maximum and
minimum levels for the rest of the models exhibit a very small change. The latter can also
be seen in Table IV.
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Figure 14. WSS distribution for di�erent aneurysm widths for: (a) Newtonian; (b) Casson;
(c) Power-Law; and (d) Quemada models.

5. CONCLUSIONS

A study of the �ow e�ects of three di�erent blood rheological models namely the Casson,
Power-Law and Quemada models in 3D models of an axisymmetric stenosis and an aneurysm
is presented. The �ow �eld and wall shear-stress distributions that each model induces for
di�erent Re number and degrees of abnormality is investigated and results show that there are
marked di�erences between simulating the blood as Newtonian and as non-Newtonian �uid.
Furthermore in the case of the stenosis, the Power-Law model exhibits similar trends as the
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Figure 15. WSS distribution for 50% degree of stenosis and Re=300 for all models.

Quemada and Casson models as regards the pressure di�erence when Re is varied whereas this
trend is di�erent as regards to the WSS. For low degrees of stenosis the pressure di�erence and
WSS peaks for the Power-Law model are higher than for the other models. This phenomenon
reverses for high degrees of stenosis. As regards the aneurysm case, the Power-Law model
exhibits the highest values of maximum wall shear stress (�maxW ) and pressure drop (�P)
compared to the other models whereas the values of the minimum wall shear stress (�minW )
are very close for all models. In addition the increase of Re induces a more rapid increase
of �maxW for the Power-Law model compared to the rest of the models whereas the increase in
aneurysm bulging has virtually no e�ect on neither �P nor the wall shear stress distribution
on any of the models. As regards the constitutive equations of the models, the Power-Law and
Quemada models do not account for a yield stress, which is evident in rheological experiments
of blood [25]. Therefore, the use of the Casson model should be preferred for modelling of
low shear-rate �ows. However, in some cases and for more complex �ows the results for
Quemada and Casson models at low shear-rate regions are very close. For example for the
�ow in a 50% degree of stenosis and for Re=300, the �ow reattachement points where shear
rate is zero seem to be very close for the Quemada and Casson models (Figure 15) whereas
the reattachement point for the Power-Law model appears at a shorter distance. Conclusively
the Power-Law model exhibits di�erent behaviour in all cases compared to the other models
whereas Quemada and Casson models exhibit similar behaviour in the case of the stenosis
but di�erent behaviours in the case of the aneurysm.
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